Description: Define the set of non-unital ring isomorphisms from r to s . (Contributed by AV, 20-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rngim | |- RngIso = ( r e. _V , s e. _V |-> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crngim | |- RngIso |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | vf | |- f |
|
| 5 | 1 | cv | |- r |
| 6 | crnghm | |- RngHom |
|
| 7 | 3 | cv | |- s |
| 8 | 5 7 6 | co | |- ( r RngHom s ) |
| 9 | 4 | cv | |- f |
| 10 | 9 | ccnv | |- `' f |
| 11 | 7 5 6 | co | |- ( s RngHom r ) |
| 12 | 10 11 | wcel | |- `' f e. ( s RngHom r ) |
| 13 | 12 4 8 | crab | |- { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } |
| 14 | 1 3 2 2 13 | cmpo | |- ( r e. _V , s e. _V |-> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } ) |
| 15 | 0 14 | wceq | |- RngIso = ( r e. _V , s e. _V |-> { f e. ( r RngHom s ) | `' f e. ( s RngHom r ) } ) |