Description: Define the set of ring isomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rngiso | |- RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crs | |- RingIso |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | vs | |- s |
|
4 | vf | |- f |
|
5 | 1 | cv | |- r |
6 | crh | |- RingHom |
|
7 | 3 | cv | |- s |
8 | 5 7 6 | co | |- ( r RingHom s ) |
9 | 4 | cv | |- f |
10 | 9 | ccnv | |- `' f |
11 | 7 5 6 | co | |- ( s RingHom r ) |
12 | 10 11 | wcel | |- `' f e. ( s RingHom r ) |
13 | 12 4 8 | crab | |- { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } |
14 | 1 3 2 2 13 | cmpo | |- ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) |
15 | 0 14 | wceq | |- RingIso = ( r e. _V , s e. _V |-> { f e. ( r RingHom s ) | `' f e. ( s RingHom r ) } ) |