Description: Define the function which gives the set of ring isomorphisms between two given rings. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rngoiso | |- RingOpsIso = ( r e. RingOps , s e. RingOps |-> { f e. ( r RingOpsHom s ) | f : ran ( 1st ` r ) -1-1-onto-> ran ( 1st ` s ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crngoiso | |- RingOpsIso |
|
| 1 | vr | |- r |
|
| 2 | crngo | |- RingOps |
|
| 3 | vs | |- s |
|
| 4 | vf | |- f |
|
| 5 | 1 | cv | |- r |
| 6 | crngohom | |- RingOpsHom |
|
| 7 | 3 | cv | |- s |
| 8 | 5 7 6 | co | |- ( r RingOpsHom s ) |
| 9 | 4 | cv | |- f |
| 10 | c1st | |- 1st |
|
| 11 | 5 10 | cfv | |- ( 1st ` r ) |
| 12 | 11 | crn | |- ran ( 1st ` r ) |
| 13 | 7 10 | cfv | |- ( 1st ` s ) |
| 14 | 13 | crn | |- ran ( 1st ` s ) |
| 15 | 12 14 9 | wf1o | |- f : ran ( 1st ` r ) -1-1-onto-> ran ( 1st ` s ) |
| 16 | 15 4 8 | crab | |- { f e. ( r RingOpsHom s ) | f : ran ( 1st ` r ) -1-1-onto-> ran ( 1st ` s ) } |
| 17 | 1 3 2 2 16 | cmpo | |- ( r e. RingOps , s e. RingOps |-> { f e. ( r RingOpsHom s ) | f : ran ( 1st ` r ) -1-1-onto-> ran ( 1st ` s ) } ) |
| 18 | 0 17 | wceq | |- RingOpsIso = ( r e. RingOps , s e. RingOps |-> { f e. ( r RingOpsHom s ) | f : ran ( 1st ` r ) -1-1-onto-> ran ( 1st ` s ) } ) |