| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crrn |
|- Rn |
| 1 |
|
vi |
|- i |
| 2 |
|
cfn |
|- Fin |
| 3 |
|
vx |
|- x |
| 4 |
|
cr |
|- RR |
| 5 |
|
cmap |
|- ^m |
| 6 |
1
|
cv |
|- i |
| 7 |
4 6 5
|
co |
|- ( RR ^m i ) |
| 8 |
|
vy |
|- y |
| 9 |
|
csqrt |
|- sqrt |
| 10 |
|
vk |
|- k |
| 11 |
3
|
cv |
|- x |
| 12 |
10
|
cv |
|- k |
| 13 |
12 11
|
cfv |
|- ( x ` k ) |
| 14 |
|
cmin |
|- - |
| 15 |
8
|
cv |
|- y |
| 16 |
12 15
|
cfv |
|- ( y ` k ) |
| 17 |
13 16 14
|
co |
|- ( ( x ` k ) - ( y ` k ) ) |
| 18 |
|
cexp |
|- ^ |
| 19 |
|
c2 |
|- 2 |
| 20 |
17 19 18
|
co |
|- ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
| 21 |
6 20 10
|
csu |
|- sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
| 22 |
21 9
|
cfv |
|- ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 23 |
3 8 7 7 22
|
cmpo |
|- ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 24 |
1 2 23
|
cmpt |
|- ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 25 |
0 24
|
wceq |
|- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |