Metamath Proof Explorer


Definition df-rrn

Description: Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-rrn
|- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrn
 |-  Rn
1 vi
 |-  i
2 cfn
 |-  Fin
3 vx
 |-  x
4 cr
 |-  RR
5 cmap
 |-  ^m
6 1 cv
 |-  i
7 4 6 5 co
 |-  ( RR ^m i )
8 vy
 |-  y
9 csqrt
 |-  sqrt
10 vk
 |-  k
11 3 cv
 |-  x
12 10 cv
 |-  k
13 12 11 cfv
 |-  ( x ` k )
14 cmin
 |-  -
15 8 cv
 |-  y
16 12 15 cfv
 |-  ( y ` k )
17 13 16 14 co
 |-  ( ( x ` k ) - ( y ` k ) )
18 cexp
 |-  ^
19 c2
 |-  2
20 17 19 18 co
 |-  ( ( ( x ` k ) - ( y ` k ) ) ^ 2 )
21 6 20 10 csu
 |-  sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 )
22 21 9 cfv
 |-  ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) )
23 3 8 7 7 22 cmpo
 |-  ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) )
24 1 2 23 cmpt
 |-  ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) )
25 0 24 wceq
 |-  Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) )