Step |
Hyp |
Ref |
Expression |
0 |
|
crrn |
|- Rn |
1 |
|
vi |
|- i |
2 |
|
cfn |
|- Fin |
3 |
|
vx |
|- x |
4 |
|
cr |
|- RR |
5 |
|
cmap |
|- ^m |
6 |
1
|
cv |
|- i |
7 |
4 6 5
|
co |
|- ( RR ^m i ) |
8 |
|
vy |
|- y |
9 |
|
csqrt |
|- sqrt |
10 |
|
vk |
|- k |
11 |
3
|
cv |
|- x |
12 |
10
|
cv |
|- k |
13 |
12 11
|
cfv |
|- ( x ` k ) |
14 |
|
cmin |
|- - |
15 |
8
|
cv |
|- y |
16 |
12 15
|
cfv |
|- ( y ` k ) |
17 |
13 16 14
|
co |
|- ( ( x ` k ) - ( y ` k ) ) |
18 |
|
cexp |
|- ^ |
19 |
|
c2 |
|- 2 |
20 |
17 19 18
|
co |
|- ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
21 |
6 20 10
|
csu |
|- sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) |
22 |
21 9
|
cfv |
|- ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
23 |
3 8 7 7 22
|
cmpo |
|- ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
24 |
1 2 23
|
cmpt |
|- ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
25 |
0 24
|
wceq |
|- Rn = ( i e. Fin |-> ( x e. ( RR ^m i ) , y e. ( RR ^m i ) |-> ( sqrt ` sum_ k e. i ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |