| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csad |
|- sadd |
| 1 |
|
vx |
|- x |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
2
|
cpw |
|- ~P NN0 |
| 4 |
|
vy |
|- y |
| 5 |
|
vk |
|- k |
| 6 |
5
|
cv |
|- k |
| 7 |
1
|
cv |
|- x |
| 8 |
6 7
|
wcel |
|- k e. x |
| 9 |
4
|
cv |
|- y |
| 10 |
6 9
|
wcel |
|- k e. y |
| 11 |
|
c0 |
|- (/) |
| 12 |
|
cc0 |
|- 0 |
| 13 |
|
vc |
|- c |
| 14 |
|
c2o |
|- 2o |
| 15 |
|
vm |
|- m |
| 16 |
15
|
cv |
|- m |
| 17 |
16 7
|
wcel |
|- m e. x |
| 18 |
16 9
|
wcel |
|- m e. y |
| 19 |
13
|
cv |
|- c |
| 20 |
11 19
|
wcel |
|- (/) e. c |
| 21 |
17 18 20
|
wcad |
|- cadd ( m e. x , m e. y , (/) e. c ) |
| 22 |
|
c1o |
|- 1o |
| 23 |
21 22 11
|
cif |
|- if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) |
| 24 |
13 15 14 2 23
|
cmpo |
|- ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) |
| 25 |
|
vn |
|- n |
| 26 |
25
|
cv |
|- n |
| 27 |
26 12
|
wceq |
|- n = 0 |
| 28 |
|
cmin |
|- - |
| 29 |
|
c1 |
|- 1 |
| 30 |
26 29 28
|
co |
|- ( n - 1 ) |
| 31 |
27 11 30
|
cif |
|- if ( n = 0 , (/) , ( n - 1 ) ) |
| 32 |
25 2 31
|
cmpt |
|- ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) |
| 33 |
24 32 12
|
cseq |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 34 |
6 33
|
cfv |
|- ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) |
| 35 |
11 34
|
wcel |
|- (/) e. ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) |
| 36 |
8 10 35
|
whad |
|- hadd ( k e. x , k e. y , (/) e. ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) ) |
| 37 |
36 5 2
|
crab |
|- { k e. NN0 | hadd ( k e. x , k e. y , (/) e. ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) ) } |
| 38 |
1 4 3 3 37
|
cmpo |
|- ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | hadd ( k e. x , k e. y , (/) e. ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) ) } ) |
| 39 |
0 38
|
wceq |
|- sadd = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | hadd ( k e. x , k e. y , (/) e. ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. x , m e. y , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` k ) ) } ) |