Metamath Proof Explorer


Definition df-sat

Description: Define the satisfaction predicate. This recursive construction builds up a function over wff codes (see satff ) and simultaneously defines the set of assignments to all variables from M that makes the coded wff true in the model M , where e. is interpreted as the binary relation E on M .

The interpretation of the statement S e. ( ( ( M Sat E )n )U ) is that for the model <. M , E >. , S :om --> M is a valuation of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) and U is a code for a wff using e. , -/\ , A. that is true under the assignment S . The function is defined by finite recursion; ( ( M Sat E )n ) only operates on wffs of depth at most n e.om , and ( ( M Sat E )om ) = U_ n e. _om ( ( M Sat E )n ) operates on all wffs.

The coding scheme for the wffs is defined so that

(Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-sat
|- Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csat
 |-  Sat
1 vm
 |-  m
2 cvv
 |-  _V
3 ve
 |-  e
4 vf
 |-  f
5 4 cv
 |-  f
6 vx
 |-  x
7 vy
 |-  y
8 vu
 |-  u
9 vv
 |-  v
10 6 cv
 |-  x
11 c1st
 |-  1st
12 8 cv
 |-  u
13 12 11 cfv
 |-  ( 1st ` u )
14 cgna
 |-  |g
15 9 cv
 |-  v
16 15 11 cfv
 |-  ( 1st ` v )
17 13 16 14 co
 |-  ( ( 1st ` u ) |g ( 1st ` v ) )
18 10 17 wceq
 |-  x = ( ( 1st ` u ) |g ( 1st ` v ) )
19 7 cv
 |-  y
20 1 cv
 |-  m
21 cmap
 |-  ^m
22 com
 |-  _om
23 20 22 21 co
 |-  ( m ^m _om )
24 c2nd
 |-  2nd
25 12 24 cfv
 |-  ( 2nd ` u )
26 15 24 cfv
 |-  ( 2nd ` v )
27 25 26 cin
 |-  ( ( 2nd ` u ) i^i ( 2nd ` v ) )
28 23 27 cdif
 |-  ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) )
29 19 28 wceq
 |-  y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) )
30 18 29 wa
 |-  ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) )
31 30 9 5 wrex
 |-  E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) )
32 vi
 |-  i
33 32 cv
 |-  i
34 13 33 cgol
 |-  A.g i ( 1st ` u )
35 10 34 wceq
 |-  x = A.g i ( 1st ` u )
36 va
 |-  a
37 vz
 |-  z
38 37 cv
 |-  z
39 33 38 cop
 |-  <. i , z >.
40 39 csn
 |-  { <. i , z >. }
41 36 cv
 |-  a
42 33 csn
 |-  { i }
43 22 42 cdif
 |-  ( _om \ { i } )
44 41 43 cres
 |-  ( a |` ( _om \ { i } ) )
45 40 44 cun
 |-  ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) )
46 45 25 wcel
 |-  ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u )
47 46 37 20 wral
 |-  A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u )
48 47 36 23 crab
 |-  { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) }
49 19 48 wceq
 |-  y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) }
50 35 49 wa
 |-  ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } )
51 50 32 22 wrex
 |-  E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } )
52 31 51 wo
 |-  ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) )
53 52 8 5 wrex
 |-  E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) )
54 53 6 7 copab
 |-  { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) }
55 5 54 cun
 |-  ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } )
56 4 2 55 cmpt
 |-  ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) )
57 vj
 |-  j
58 cgoe
 |-  e.g
59 57 cv
 |-  j
60 33 59 58 co
 |-  ( i e.g j )
61 10 60 wceq
 |-  x = ( i e.g j )
62 33 41 cfv
 |-  ( a ` i )
63 3 cv
 |-  e
64 59 41 cfv
 |-  ( a ` j )
65 62 64 63 wbr
 |-  ( a ` i ) e ( a ` j )
66 65 36 23 crab
 |-  { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) }
67 19 66 wceq
 |-  y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) }
68 61 67 wa
 |-  ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } )
69 68 57 22 wrex
 |-  E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } )
70 69 32 22 wrex
 |-  E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } )
71 70 6 7 copab
 |-  { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) }
72 56 71 crdg
 |-  rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } )
73 22 csuc
 |-  suc _om
74 72 73 cres
 |-  ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om )
75 1 3 2 2 74 cmpo
 |-  ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) )
76 0 75 wceq
 |-  Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) )