Description: Define the satisfaction predicate. This recursive construction builds up a function over wff codes (see satff ) and simultaneously defines the set of assignments to all variables from M that makes the coded wff true in the model M , where e. is interpreted as the binary relation E on M .
The interpretation of the statement S e. ( ( ( M Sat E )n )U ) is that for the model <. M , E >. , S :om --> M is a valuation of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) and U is a code for a wff using e. , -/\ , A. that is true under the assignment S . The function is defined by finite recursion; ( ( M Sat E )n ) only operates on wffs of depth at most n e.om , and ( ( M Sat E )om ) = U_ n e. _om ( ( M Sat E )n ) operates on all wffs.
The coding scheme for the wffs is defined so that
(Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sat | |- Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csat | |- Sat |
|
| 1 | vm | |- m |
|
| 2 | cvv | |- _V |
|
| 3 | ve | |- e |
|
| 4 | vf | |- f |
|
| 5 | 4 | cv | |- f |
| 6 | vx | |- x |
|
| 7 | vy | |- y |
|
| 8 | vu | |- u |
|
| 9 | vv | |- v |
|
| 10 | 6 | cv | |- x |
| 11 | c1st | |- 1st |
|
| 12 | 8 | cv | |- u |
| 13 | 12 11 | cfv | |- ( 1st ` u ) |
| 14 | cgna | |- |g |
|
| 15 | 9 | cv | |- v |
| 16 | 15 11 | cfv | |- ( 1st ` v ) |
| 17 | 13 16 14 | co | |- ( ( 1st ` u ) |g ( 1st ` v ) ) |
| 18 | 10 17 | wceq | |- x = ( ( 1st ` u ) |g ( 1st ` v ) ) |
| 19 | 7 | cv | |- y |
| 20 | 1 | cv | |- m |
| 21 | cmap | |- ^m |
|
| 22 | com | |- _om |
|
| 23 | 20 22 21 | co | |- ( m ^m _om ) |
| 24 | c2nd | |- 2nd |
|
| 25 | 12 24 | cfv | |- ( 2nd ` u ) |
| 26 | 15 24 | cfv | |- ( 2nd ` v ) |
| 27 | 25 26 | cin | |- ( ( 2nd ` u ) i^i ( 2nd ` v ) ) |
| 28 | 23 27 | cdif | |- ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 29 | 19 28 | wceq | |- y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 30 | 18 29 | wa | |- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
| 31 | 30 9 5 | wrex | |- E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) |
| 32 | vi | |- i |
|
| 33 | 32 | cv | |- i |
| 34 | 13 33 | cgol | |- A.g i ( 1st ` u ) |
| 35 | 10 34 | wceq | |- x = A.g i ( 1st ` u ) |
| 36 | va | |- a |
|
| 37 | vz | |- z |
|
| 38 | 37 | cv | |- z |
| 39 | 33 38 | cop | |- <. i , z >. |
| 40 | 39 | csn | |- { <. i , z >. } |
| 41 | 36 | cv | |- a |
| 42 | 33 | csn | |- { i } |
| 43 | 22 42 | cdif | |- ( _om \ { i } ) |
| 44 | 41 43 | cres | |- ( a |` ( _om \ { i } ) ) |
| 45 | 40 44 | cun | |- ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) |
| 46 | 45 25 | wcel | |- ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) |
| 47 | 46 37 20 | wral | |- A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) |
| 48 | 47 36 23 | crab | |- { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 49 | 19 48 | wceq | |- y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 50 | 35 49 | wa | |- ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
| 51 | 50 32 22 | wrex | |- E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) |
| 52 | 31 51 | wo | |- ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 53 | 52 8 5 | wrex | |- E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 54 | 53 6 7 | copab | |- { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
| 55 | 5 54 | cun | |- ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
| 56 | 4 2 55 | cmpt | |- ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 57 | vj | |- j |
|
| 58 | cgoe | |- e.g |
|
| 59 | 57 | cv | |- j |
| 60 | 33 59 58 | co | |- ( i e.g j ) |
| 61 | 10 60 | wceq | |- x = ( i e.g j ) |
| 62 | 33 41 | cfv | |- ( a ` i ) |
| 63 | 3 | cv | |- e |
| 64 | 59 41 | cfv | |- ( a ` j ) |
| 65 | 62 64 63 | wbr | |- ( a ` i ) e ( a ` j ) |
| 66 | 65 36 23 | crab | |- { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } |
| 67 | 19 66 | wceq | |- y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } |
| 68 | 61 67 | wa | |- ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) |
| 69 | 68 57 22 | wrex | |- E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) |
| 70 | 69 32 22 | wrex | |- E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) |
| 71 | 70 6 7 | copab | |- { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } |
| 72 | 56 71 | crdg | |- rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |
| 73 | 22 | csuc | |- suc _om |
| 74 | 72 73 | cres | |- ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) |
| 75 | 1 3 2 2 74 | cmpo | |- ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) ) |
| 76 | 0 75 | wceq | |- Sat = ( m e. _V , e e. _V |-> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | E. u e. f ( E. v e. f ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( m ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( m ^m _om ) | A. z e. m ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) , { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( m ^m _om ) | ( a ` i ) e ( a ` j ) } ) } ) |` suc _om ) ) |