| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cscmat |
|- ScMat |
| 1 |
|
vn |
|- n |
| 2 |
|
cfn |
|- Fin |
| 3 |
|
vr |
|- r |
| 4 |
|
cvv |
|- _V |
| 5 |
1
|
cv |
|- n |
| 6 |
|
cmat |
|- Mat |
| 7 |
3
|
cv |
|- r |
| 8 |
5 7 6
|
co |
|- ( n Mat r ) |
| 9 |
|
va |
|- a |
| 10 |
|
vm |
|- m |
| 11 |
|
cbs |
|- Base |
| 12 |
9
|
cv |
|- a |
| 13 |
12 11
|
cfv |
|- ( Base ` a ) |
| 14 |
|
vc |
|- c |
| 15 |
7 11
|
cfv |
|- ( Base ` r ) |
| 16 |
10
|
cv |
|- m |
| 17 |
14
|
cv |
|- c |
| 18 |
|
cvsca |
|- .s |
| 19 |
12 18
|
cfv |
|- ( .s ` a ) |
| 20 |
|
cur |
|- 1r |
| 21 |
12 20
|
cfv |
|- ( 1r ` a ) |
| 22 |
17 21 19
|
co |
|- ( c ( .s ` a ) ( 1r ` a ) ) |
| 23 |
16 22
|
wceq |
|- m = ( c ( .s ` a ) ( 1r ` a ) ) |
| 24 |
23 14 15
|
wrex |
|- E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) |
| 25 |
24 10 13
|
crab |
|- { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } |
| 26 |
9 8 25
|
csb |
|- [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } |
| 27 |
1 3 2 4 26
|
cmpo |
|- ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) |
| 28 |
0 27
|
wceq |
|- ScMat = ( n e. Fin , r e. _V |-> [_ ( n Mat r ) / a ]_ { m e. ( Base ` a ) | E. c e. ( Base ` r ) m = ( c ( .s ` a ) ( 1r ` a ) ) } ) |