| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csect |  |-  Sect | 
						
							| 1 |  | vc |  |-  c | 
						
							| 2 |  | ccat |  |-  Cat | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  c | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` c ) | 
						
							| 7 |  | vy |  |-  y | 
						
							| 8 |  | vf |  |-  f | 
						
							| 9 |  | vg |  |-  g | 
						
							| 10 |  | chom |  |-  Hom | 
						
							| 11 | 5 10 | cfv |  |-  ( Hom ` c ) | 
						
							| 12 |  | vh |  |-  h | 
						
							| 13 | 8 | cv |  |-  f | 
						
							| 14 | 3 | cv |  |-  x | 
						
							| 15 | 12 | cv |  |-  h | 
						
							| 16 | 7 | cv |  |-  y | 
						
							| 17 | 14 16 15 | co |  |-  ( x h y ) | 
						
							| 18 | 13 17 | wcel |  |-  f e. ( x h y ) | 
						
							| 19 | 9 | cv |  |-  g | 
						
							| 20 | 16 14 15 | co |  |-  ( y h x ) | 
						
							| 21 | 19 20 | wcel |  |-  g e. ( y h x ) | 
						
							| 22 | 18 21 | wa |  |-  ( f e. ( x h y ) /\ g e. ( y h x ) ) | 
						
							| 23 | 14 16 | cop |  |-  <. x , y >. | 
						
							| 24 |  | cco |  |-  comp | 
						
							| 25 | 5 24 | cfv |  |-  ( comp ` c ) | 
						
							| 26 | 23 14 25 | co |  |-  ( <. x , y >. ( comp ` c ) x ) | 
						
							| 27 | 19 13 26 | co |  |-  ( g ( <. x , y >. ( comp ` c ) x ) f ) | 
						
							| 28 |  | ccid |  |-  Id | 
						
							| 29 | 5 28 | cfv |  |-  ( Id ` c ) | 
						
							| 30 | 14 29 | cfv |  |-  ( ( Id ` c ) ` x ) | 
						
							| 31 | 27 30 | wceq |  |-  ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) | 
						
							| 32 | 22 31 | wa |  |-  ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) | 
						
							| 33 | 32 12 11 | wsbc |  |-  [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) | 
						
							| 34 | 33 8 9 | copab |  |-  { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } | 
						
							| 35 | 3 7 6 6 34 | cmpo |  |-  ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) | 
						
							| 36 | 1 2 35 | cmpt |  |-  ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) | 
						
							| 37 | 0 36 | wceq |  |-  Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |