Step |
Hyp |
Ref |
Expression |
0 |
|
csect |
|- Sect |
1 |
|
vc |
|- c |
2 |
|
ccat |
|- Cat |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- c |
6 |
5 4
|
cfv |
|- ( Base ` c ) |
7 |
|
vy |
|- y |
8 |
|
vf |
|- f |
9 |
|
vg |
|- g |
10 |
|
chom |
|- Hom |
11 |
5 10
|
cfv |
|- ( Hom ` c ) |
12 |
|
vh |
|- h |
13 |
8
|
cv |
|- f |
14 |
3
|
cv |
|- x |
15 |
12
|
cv |
|- h |
16 |
7
|
cv |
|- y |
17 |
14 16 15
|
co |
|- ( x h y ) |
18 |
13 17
|
wcel |
|- f e. ( x h y ) |
19 |
9
|
cv |
|- g |
20 |
16 14 15
|
co |
|- ( y h x ) |
21 |
19 20
|
wcel |
|- g e. ( y h x ) |
22 |
18 21
|
wa |
|- ( f e. ( x h y ) /\ g e. ( y h x ) ) |
23 |
14 16
|
cop |
|- <. x , y >. |
24 |
|
cco |
|- comp |
25 |
5 24
|
cfv |
|- ( comp ` c ) |
26 |
23 14 25
|
co |
|- ( <. x , y >. ( comp ` c ) x ) |
27 |
19 13 26
|
co |
|- ( g ( <. x , y >. ( comp ` c ) x ) f ) |
28 |
|
ccid |
|- Id |
29 |
5 28
|
cfv |
|- ( Id ` c ) |
30 |
14 29
|
cfv |
|- ( ( Id ` c ) ` x ) |
31 |
27 30
|
wceq |
|- ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) |
32 |
22 31
|
wa |
|- ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) |
33 |
32 12 11
|
wsbc |
|- [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) |
34 |
33 8 9
|
copab |
|- { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } |
35 |
3 7 6 6 34
|
cmpo |
|- ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) |
36 |
1 2 35
|
cmpt |
|- ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |
37 |
0 36
|
wceq |
|- Sect = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> { <. f , g >. | [. ( Hom ` c ) / h ]. ( ( f e. ( x h y ) /\ g e. ( y h x ) ) /\ ( g ( <. x , y >. ( comp ` c ) x ) f ) = ( ( Id ` c ) ` x ) ) } ) ) |