Metamath Proof Explorer


Definition df-sh

Description: Define the set of subspaces of a Hilbert space. See issh for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of Beran p. 95. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion df-sh
|- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csh
 |-  SH
1 vh
 |-  h
2 chba
 |-  ~H
3 2 cpw
 |-  ~P ~H
4 c0v
 |-  0h
5 1 cv
 |-  h
6 4 5 wcel
 |-  0h e. h
7 cva
 |-  +h
8 5 5 cxp
 |-  ( h X. h )
9 7 8 cima
 |-  ( +h " ( h X. h ) )
10 9 5 wss
 |-  ( +h " ( h X. h ) ) C_ h
11 csm
 |-  .h
12 cc
 |-  CC
13 12 5 cxp
 |-  ( CC X. h )
14 11 13 cima
 |-  ( .h " ( CC X. h ) )
15 14 5 wss
 |-  ( .h " ( CC X. h ) ) C_ h
16 6 10 15 w3a
 |-  ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h )
17 16 1 3 crab
 |-  { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) }
18 0 17 wceq
 |-  SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) }