Description: Define the set of subspaces of a Hilbert space. See issh for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of Beran p. 95. (Contributed by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-sh | |- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csh | |- SH |
|
1 | vh | |- h |
|
2 | chba | |- ~H |
|
3 | 2 | cpw | |- ~P ~H |
4 | c0v | |- 0h |
|
5 | 1 | cv | |- h |
6 | 4 5 | wcel | |- 0h e. h |
7 | cva | |- +h |
|
8 | 5 5 | cxp | |- ( h X. h ) |
9 | 7 8 | cima | |- ( +h " ( h X. h ) ) |
10 | 9 5 | wss | |- ( +h " ( h X. h ) ) C_ h |
11 | csm | |- .h |
|
12 | cc | |- CC |
|
13 | 12 5 | cxp | |- ( CC X. h ) |
14 | 11 13 | cima | |- ( .h " ( CC X. h ) ) |
15 | 14 5 | wss | |- ( .h " ( CC X. h ) ) C_ h |
16 | 6 10 15 | w3a | |- ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) |
17 | 16 1 3 | crab | |- { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |
18 | 0 17 | wceq | |- SH = { h e. ~P ~H | ( 0h e. h /\ ( +h " ( h X. h ) ) C_ h /\ ( .h " ( CC X. h ) ) C_ h ) } |