Metamath Proof Explorer


Definition df-shft

Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of CC ) and produces a new function on CC . See shftval for its value. (Contributed by NM, 20-Jul-2005)

Ref Expression
Assertion df-shft
|- shift = ( f e. _V , x e. CC |-> { <. y , z >. | ( y e. CC /\ ( y - x ) f z ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cshi
 |-  shift
1 vf
 |-  f
2 cvv
 |-  _V
3 vx
 |-  x
4 cc
 |-  CC
5 vy
 |-  y
6 vz
 |-  z
7 5 cv
 |-  y
8 7 4 wcel
 |-  y e. CC
9 cmin
 |-  -
10 3 cv
 |-  x
11 7 10 9 co
 |-  ( y - x )
12 1 cv
 |-  f
13 6 cv
 |-  z
14 11 13 12 wbr
 |-  ( y - x ) f z
15 8 14 wa
 |-  ( y e. CC /\ ( y - x ) f z )
16 15 5 6 copab
 |-  { <. y , z >. | ( y e. CC /\ ( y - x ) f z ) }
17 1 3 2 4 16 cmpo
 |-  ( f e. _V , x e. CC |-> { <. y , z >. | ( y e. CC /\ ( y - x ) f z ) } )
18 0 17 wceq
 |-  shift = ( f e. _V , x e. CC |-> { <. y , z >. | ( y e. CC /\ ( y - x ) f z ) } )