| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cslt |
|- |
| 1 |
|
vf |
|- f |
| 2 |
|
vg |
|- g |
| 3 |
1
|
cv |
|- f |
| 4 |
|
csur |
|- No |
| 5 |
3 4
|
wcel |
|- f e. No |
| 6 |
2
|
cv |
|- g |
| 7 |
6 4
|
wcel |
|- g e. No |
| 8 |
5 7
|
wa |
|- ( f e. No /\ g e. No ) |
| 9 |
|
vx |
|- x |
| 10 |
|
con0 |
|- On |
| 11 |
|
vy |
|- y |
| 12 |
9
|
cv |
|- x |
| 13 |
11
|
cv |
|- y |
| 14 |
13 3
|
cfv |
|- ( f ` y ) |
| 15 |
13 6
|
cfv |
|- ( g ` y ) |
| 16 |
14 15
|
wceq |
|- ( f ` y ) = ( g ` y ) |
| 17 |
16 11 12
|
wral |
|- A. y e. x ( f ` y ) = ( g ` y ) |
| 18 |
12 3
|
cfv |
|- ( f ` x ) |
| 19 |
|
c1o |
|- 1o |
| 20 |
|
c0 |
|- (/) |
| 21 |
19 20
|
cop |
|- <. 1o , (/) >. |
| 22 |
|
c2o |
|- 2o |
| 23 |
19 22
|
cop |
|- <. 1o , 2o >. |
| 24 |
20 22
|
cop |
|- <. (/) , 2o >. |
| 25 |
21 23 24
|
ctp |
|- { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } |
| 26 |
12 6
|
cfv |
|- ( g ` x ) |
| 27 |
18 26 25
|
wbr |
|- ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) |
| 28 |
17 27
|
wa |
|- ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) |
| 29 |
28 9 10
|
wrex |
|- E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) |
| 30 |
8 29
|
wa |
|- ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) |
| 31 |
30 1 2
|
copab |
|- { <. f , g >. | ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) } |
| 32 |
0 31
|
wceq |
|- . | ( ( f e. No /\ g e. No ) /\ E. x e. On ( A. y e. x ( f ` y ) = ( g ` y ) /\ ( f ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( g ` x ) ) ) } |