| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cslw |  |-  pSyl | 
						
							| 1 |  | vp |  |-  p | 
						
							| 2 |  | cprime |  |-  Prime | 
						
							| 3 |  | vg |  |-  g | 
						
							| 4 |  | cgrp |  |-  Grp | 
						
							| 5 |  | vh |  |-  h | 
						
							| 6 |  | csubg |  |-  SubGrp | 
						
							| 7 | 3 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( SubGrp ` g ) | 
						
							| 9 |  | vk |  |-  k | 
						
							| 10 | 5 | cv |  |-  h | 
						
							| 11 | 9 | cv |  |-  k | 
						
							| 12 | 10 11 | wss |  |-  h C_ k | 
						
							| 13 | 1 | cv |  |-  p | 
						
							| 14 |  | cpgp |  |-  pGrp | 
						
							| 15 |  | cress |  |-  |`s | 
						
							| 16 | 7 11 15 | co |  |-  ( g |`s k ) | 
						
							| 17 | 13 16 14 | wbr |  |-  p pGrp ( g |`s k ) | 
						
							| 18 | 12 17 | wa |  |-  ( h C_ k /\ p pGrp ( g |`s k ) ) | 
						
							| 19 | 10 11 | wceq |  |-  h = k | 
						
							| 20 | 18 19 | wb |  |-  ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) | 
						
							| 21 | 20 9 8 | wral |  |-  A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) | 
						
							| 22 | 21 5 8 | crab |  |-  { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } | 
						
							| 23 | 1 3 2 4 22 | cmpo |  |-  ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) | 
						
							| 24 | 0 23 | wceq |  |-  pSyl = ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) |