| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csmu |
|- smul |
| 1 |
|
vx |
|- x |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
2
|
cpw |
|- ~P NN0 |
| 4 |
|
vy |
|- y |
| 5 |
|
vk |
|- k |
| 6 |
5
|
cv |
|- k |
| 7 |
|
cc0 |
|- 0 |
| 8 |
|
vp |
|- p |
| 9 |
|
vm |
|- m |
| 10 |
8
|
cv |
|- p |
| 11 |
|
csad |
|- sadd |
| 12 |
|
vn |
|- n |
| 13 |
9
|
cv |
|- m |
| 14 |
1
|
cv |
|- x |
| 15 |
13 14
|
wcel |
|- m e. x |
| 16 |
12
|
cv |
|- n |
| 17 |
|
cmin |
|- - |
| 18 |
16 13 17
|
co |
|- ( n - m ) |
| 19 |
4
|
cv |
|- y |
| 20 |
18 19
|
wcel |
|- ( n - m ) e. y |
| 21 |
15 20
|
wa |
|- ( m e. x /\ ( n - m ) e. y ) |
| 22 |
21 12 2
|
crab |
|- { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } |
| 23 |
10 22 11
|
co |
|- ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) |
| 24 |
8 9 3 2 23
|
cmpo |
|- ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) |
| 25 |
16 7
|
wceq |
|- n = 0 |
| 26 |
|
c0 |
|- (/) |
| 27 |
|
c1 |
|- 1 |
| 28 |
16 27 17
|
co |
|- ( n - 1 ) |
| 29 |
25 26 28
|
cif |
|- if ( n = 0 , (/) , ( n - 1 ) ) |
| 30 |
12 2 29
|
cmpt |
|- ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) |
| 31 |
24 30 7
|
cseq |
|- seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 32 |
|
caddc |
|- + |
| 33 |
6 27 32
|
co |
|- ( k + 1 ) |
| 34 |
33 31
|
cfv |
|- ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) |
| 35 |
6 34
|
wcel |
|- k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) |
| 36 |
35 5 2
|
crab |
|- { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } |
| 37 |
1 4 3 3 36
|
cmpo |
|- ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |
| 38 |
0 37
|
wceq |
|- smul = ( x e. ~P NN0 , y e. ~P NN0 |-> { k e. NN0 | k e. ( seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. x /\ ( n - m ) e. y ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` ( k + 1 ) ) } ) |