Description: Define the strict complete (linear) order predicate. The expression R Or A is true if relationship R orders A . For example, < Or RR is true ( ltso ). Equivalent to Definition 6.19(1) of TakeutiZaring p. 29. (Contributed by NM, 21-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | 1 0 | wor | |- R Or A |
| 3 | 1 0 | wpo | |- R Po A |
| 4 | vx | |- x |
|
| 5 | vy | |- y |
|
| 6 | 4 | cv | |- x |
| 7 | 5 | cv | |- y |
| 8 | 6 7 0 | wbr | |- x R y |
| 9 | 6 7 | wceq | |- x = y |
| 10 | 7 6 0 | wbr | |- y R x |
| 11 | 8 9 10 | w3o | |- ( x R y \/ x = y \/ y R x ) |
| 12 | 11 5 1 | wral | |- A. y e. A ( x R y \/ x = y \/ y R x ) |
| 13 | 12 4 1 | wral | |- A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) |
| 14 | 3 13 | wa | |- ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) |
| 15 | 2 14 | wb | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |