| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csph |
|- Sphere |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
|
vr |
|- r |
| 8 |
|
cc0 |
|- 0 |
| 9 |
|
cicc |
|- [,] |
| 10 |
|
cpnf |
|- +oo |
| 11 |
8 10 9
|
co |
|- ( 0 [,] +oo ) |
| 12 |
|
vp |
|- p |
| 13 |
12
|
cv |
|- p |
| 14 |
|
cds |
|- dist |
| 15 |
5 14
|
cfv |
|- ( dist ` w ) |
| 16 |
3
|
cv |
|- x |
| 17 |
13 16 15
|
co |
|- ( p ( dist ` w ) x ) |
| 18 |
7
|
cv |
|- r |
| 19 |
17 18
|
wceq |
|- ( p ( dist ` w ) x ) = r |
| 20 |
19 12 6
|
crab |
|- { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } |
| 21 |
3 7 6 11 20
|
cmpo |
|- ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) |
| 22 |
1 2 21
|
cmpt |
|- ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |
| 23 |
0 22
|
wceq |
|- Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |