| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cspthson |  |-  SPathsOn | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 |  | cvtx |  |-  Vtx | 
						
							| 5 | 1 | cv |  |-  g | 
						
							| 6 | 5 4 | cfv |  |-  ( Vtx ` g ) | 
						
							| 7 |  | vb |  |-  b | 
						
							| 8 |  | vf |  |-  f | 
						
							| 9 |  | vp |  |-  p | 
						
							| 10 | 8 | cv |  |-  f | 
						
							| 11 | 3 | cv |  |-  a | 
						
							| 12 |  | ctrlson |  |-  TrailsOn | 
						
							| 13 | 5 12 | cfv |  |-  ( TrailsOn ` g ) | 
						
							| 14 | 7 | cv |  |-  b | 
						
							| 15 | 11 14 13 | co |  |-  ( a ( TrailsOn ` g ) b ) | 
						
							| 16 | 9 | cv |  |-  p | 
						
							| 17 | 10 16 15 | wbr |  |-  f ( a ( TrailsOn ` g ) b ) p | 
						
							| 18 |  | cspths |  |-  SPaths | 
						
							| 19 | 5 18 | cfv |  |-  ( SPaths ` g ) | 
						
							| 20 | 10 16 19 | wbr |  |-  f ( SPaths ` g ) p | 
						
							| 21 | 17 20 | wa |  |-  ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) | 
						
							| 22 | 21 8 9 | copab |  |-  { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) } | 
						
							| 23 | 3 7 6 6 22 | cmpo |  |-  ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) } ) | 
						
							| 24 | 1 2 23 | cmpt |  |-  ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) } ) ) | 
						
							| 25 | 0 24 | wceq |  |-  SPathsOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) } ) ) |