| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csra |
|- subringAlg |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` w ) |
| 8 |
|
csts |
|- sSet |
| 9 |
|
csca |
|- Scalar |
| 10 |
|
cnx |
|- ndx |
| 11 |
10 9
|
cfv |
|- ( Scalar ` ndx ) |
| 12 |
|
cress |
|- |`s |
| 13 |
3
|
cv |
|- s |
| 14 |
5 13 12
|
co |
|- ( w |`s s ) |
| 15 |
11 14
|
cop |
|- <. ( Scalar ` ndx ) , ( w |`s s ) >. |
| 16 |
5 15 8
|
co |
|- ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) |
| 17 |
|
cvsca |
|- .s |
| 18 |
10 17
|
cfv |
|- ( .s ` ndx ) |
| 19 |
|
cmulr |
|- .r |
| 20 |
5 19
|
cfv |
|- ( .r ` w ) |
| 21 |
18 20
|
cop |
|- <. ( .s ` ndx ) , ( .r ` w ) >. |
| 22 |
16 21 8
|
co |
|- ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) |
| 23 |
|
cip |
|- .i |
| 24 |
10 23
|
cfv |
|- ( .i ` ndx ) |
| 25 |
24 20
|
cop |
|- <. ( .i ` ndx ) , ( .r ` w ) >. |
| 26 |
22 25 8
|
co |
|- ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) |
| 27 |
3 7 26
|
cmpt |
|- ( s e. ~P ( Base ` w ) |-> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) ) |
| 28 |
1 2 27
|
cmpt |
|- ( w e. _V |-> ( s e. ~P ( Base ` w ) |-> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) ) ) |
| 29 |
0 28
|
wceq |
|- subringAlg = ( w e. _V |-> ( s e. ~P ( Base ` w ) |-> ( ( ( w sSet <. ( Scalar ` ndx ) , ( w |`s s ) >. ) sSet <. ( .s ` ndx ) , ( .r ` w ) >. ) sSet <. ( .i ` ndx ) , ( .r ` w ) >. ) ) ) |