Metamath Proof Explorer


Definition df-ssc

Description: Define the subset relation for subcategories. Despite the name, this is not really a "category-aware" definition, which is to say it makes no explicit references to homsets or composition; instead this is a subset-like relation on the functions that are used as subcategory specifications in df-subc , which makes it play an analogous role to the subset relation applied to the subgroups of a group. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-ssc
|- C_cat = { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cssc
 |-  C_cat
1 vh
 |-  h
2 vj
 |-  j
3 vt
 |-  t
4 2 cv
 |-  j
5 3 cv
 |-  t
6 5 5 cxp
 |-  ( t X. t )
7 4 6 wfn
 |-  j Fn ( t X. t )
8 vs
 |-  s
9 5 cpw
 |-  ~P t
10 1 cv
 |-  h
11 vx
 |-  x
12 8 cv
 |-  s
13 12 12 cxp
 |-  ( s X. s )
14 11 cv
 |-  x
15 14 4 cfv
 |-  ( j ` x )
16 15 cpw
 |-  ~P ( j ` x )
17 11 13 16 cixp
 |-  X_ x e. ( s X. s ) ~P ( j ` x )
18 10 17 wcel
 |-  h e. X_ x e. ( s X. s ) ~P ( j ` x )
19 18 8 9 wrex
 |-  E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x )
20 7 19 wa
 |-  ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) )
21 20 3 wex
 |-  E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) )
22 21 1 2 copab
 |-  { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) }
23 0 22 wceq
 |-  C_cat = { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) }