Step |
Hyp |
Ref |
Expression |
0 |
|
cssc |
|- C_cat |
1 |
|
vh |
|- h |
2 |
|
vj |
|- j |
3 |
|
vt |
|- t |
4 |
2
|
cv |
|- j |
5 |
3
|
cv |
|- t |
6 |
5 5
|
cxp |
|- ( t X. t ) |
7 |
4 6
|
wfn |
|- j Fn ( t X. t ) |
8 |
|
vs |
|- s |
9 |
5
|
cpw |
|- ~P t |
10 |
1
|
cv |
|- h |
11 |
|
vx |
|- x |
12 |
8
|
cv |
|- s |
13 |
12 12
|
cxp |
|- ( s X. s ) |
14 |
11
|
cv |
|- x |
15 |
14 4
|
cfv |
|- ( j ` x ) |
16 |
15
|
cpw |
|- ~P ( j ` x ) |
17 |
11 13 16
|
cixp |
|- X_ x e. ( s X. s ) ~P ( j ` x ) |
18 |
10 17
|
wcel |
|- h e. X_ x e. ( s X. s ) ~P ( j ` x ) |
19 |
18 8 9
|
wrex |
|- E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) |
20 |
7 19
|
wa |
|- ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) |
21 |
20 3
|
wex |
|- E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) |
22 |
21 1 2
|
copab |
|- { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) } |
23 |
0 22
|
wceq |
|- C_cat = { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) } |