Description: Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-sslt | |- < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csslt | |- < |
|
| 1 | va | |- a |
|
| 2 | vb | |- b |
|
| 3 | 1 | cv | |- a |
| 4 | csur | |- No |
|
| 5 | 3 4 | wss | |- a C_ No |
| 6 | 2 | cv | |- b |
| 7 | 6 4 | wss | |- b C_ No |
| 8 | vx | |- x |
|
| 9 | vy | |- y |
|
| 10 | 8 | cv | |- x |
| 11 | cslt | |- |
|
| 12 | 9 | cv | |- y |
| 13 | 10 12 11 | wbr | |- x |
| 14 | 13 9 6 | wral | |- A. y e. b x |
| 15 | 14 8 3 | wral | |- A. x e. a A. y e. b x |
| 16 | 5 7 15 | w3a | |- ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x |
| 17 | 16 1 2 | copab | |- { <. a , b >. | ( a C_ No /\ b C_ No /\ A. x e. a A. y e. b x |
| 18 | 0 17 | wceq | |- < |