| Step |
Hyp |
Ref |
Expression |
| 0 |
|
css |
|- SubSp |
| 1 |
|
vu |
|- u |
| 2 |
|
cnv |
|- NrmCVec |
| 3 |
|
vw |
|- w |
| 4 |
|
cpv |
|- +v |
| 5 |
3
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( +v ` w ) |
| 7 |
1
|
cv |
|- u |
| 8 |
7 4
|
cfv |
|- ( +v ` u ) |
| 9 |
6 8
|
wss |
|- ( +v ` w ) C_ ( +v ` u ) |
| 10 |
|
cns |
|- .sOLD |
| 11 |
5 10
|
cfv |
|- ( .sOLD ` w ) |
| 12 |
7 10
|
cfv |
|- ( .sOLD ` u ) |
| 13 |
11 12
|
wss |
|- ( .sOLD ` w ) C_ ( .sOLD ` u ) |
| 14 |
|
cnmcv |
|- normCV |
| 15 |
5 14
|
cfv |
|- ( normCV ` w ) |
| 16 |
7 14
|
cfv |
|- ( normCV ` u ) |
| 17 |
15 16
|
wss |
|- ( normCV ` w ) C_ ( normCV ` u ) |
| 18 |
9 13 17
|
w3a |
|- ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) |
| 19 |
18 3 2
|
crab |
|- { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } |
| 20 |
1 2 19
|
cmpt |
|- ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |
| 21 |
0 20
|
wceq |
|- SubSp = ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |