Step |
Hyp |
Ref |
Expression |
0 |
|
css |
|- SubSp |
1 |
|
vu |
|- u |
2 |
|
cnv |
|- NrmCVec |
3 |
|
vw |
|- w |
4 |
|
cpv |
|- +v |
5 |
3
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( +v ` w ) |
7 |
1
|
cv |
|- u |
8 |
7 4
|
cfv |
|- ( +v ` u ) |
9 |
6 8
|
wss |
|- ( +v ` w ) C_ ( +v ` u ) |
10 |
|
cns |
|- .sOLD |
11 |
5 10
|
cfv |
|- ( .sOLD ` w ) |
12 |
7 10
|
cfv |
|- ( .sOLD ` u ) |
13 |
11 12
|
wss |
|- ( .sOLD ` w ) C_ ( .sOLD ` u ) |
14 |
|
cnmcv |
|- normCV |
15 |
5 14
|
cfv |
|- ( normCV ` w ) |
16 |
7 14
|
cfv |
|- ( normCV ` u ) |
17 |
15 16
|
wss |
|- ( normCV ` w ) C_ ( normCV ` u ) |
18 |
9 13 17
|
w3a |
|- ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) |
19 |
18 3 2
|
crab |
|- { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } |
20 |
1 2 19
|
cmpt |
|- ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |
21 |
0 20
|
wceq |
|- SubSp = ( u e. NrmCVec |-> { w e. NrmCVec | ( ( +v ` w ) C_ ( +v ` u ) /\ ( .sOLD ` w ) C_ ( .sOLD ` u ) /\ ( normCV ` w ) C_ ( normCV ` u ) ) } ) |