Metamath Proof Explorer


Definition df-staf

Description: Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *r as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion df-staf
|- *rf = ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstf
 |-  *rf
1 vf
 |-  f
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  f
6 5 4 cfv
 |-  ( Base ` f )
7 cstv
 |-  *r
8 5 7 cfv
 |-  ( *r ` f )
9 3 cv
 |-  x
10 9 8 cfv
 |-  ( ( *r ` f ) ` x )
11 3 6 10 cmpt
 |-  ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) )
12 1 2 11 cmpt
 |-  ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) )
13 0 12 wceq
 |-  *rf = ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) )