| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csubgr |
|- SubGraph |
| 1 |
|
vs |
|- s |
| 2 |
|
vg |
|- g |
| 3 |
|
cvtx |
|- Vtx |
| 4 |
1
|
cv |
|- s |
| 5 |
4 3
|
cfv |
|- ( Vtx ` s ) |
| 6 |
2
|
cv |
|- g |
| 7 |
6 3
|
cfv |
|- ( Vtx ` g ) |
| 8 |
5 7
|
wss |
|- ( Vtx ` s ) C_ ( Vtx ` g ) |
| 9 |
|
ciedg |
|- iEdg |
| 10 |
4 9
|
cfv |
|- ( iEdg ` s ) |
| 11 |
6 9
|
cfv |
|- ( iEdg ` g ) |
| 12 |
10
|
cdm |
|- dom ( iEdg ` s ) |
| 13 |
11 12
|
cres |
|- ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) |
| 14 |
10 13
|
wceq |
|- ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) |
| 15 |
|
cedg |
|- Edg |
| 16 |
4 15
|
cfv |
|- ( Edg ` s ) |
| 17 |
5
|
cpw |
|- ~P ( Vtx ` s ) |
| 18 |
16 17
|
wss |
|- ( Edg ` s ) C_ ~P ( Vtx ` s ) |
| 19 |
8 14 18
|
w3a |
|- ( ( Vtx ` s ) C_ ( Vtx ` g ) /\ ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) /\ ( Edg ` s ) C_ ~P ( Vtx ` s ) ) |
| 20 |
19 1 2
|
copab |
|- { <. s , g >. | ( ( Vtx ` s ) C_ ( Vtx ` g ) /\ ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) /\ ( Edg ` s ) C_ ~P ( Vtx ` s ) ) } |
| 21 |
0 20
|
wceq |
|- SubGraph = { <. s , g >. | ( ( Vtx ` s ) C_ ( Vtx ` g ) /\ ( iEdg ` s ) = ( ( iEdg ` g ) |` dom ( iEdg ` s ) ) /\ ( Edg ` s ) C_ ~P ( Vtx ` s ) ) } |