Step |
Hyp |
Ref |
Expression |
0 |
|
csubma |
|- subMat |
1 |
|
vn |
|- n |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vm |
|- m |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- n |
7 |
|
cmat |
|- Mat |
8 |
3
|
cv |
|- r |
9 |
6 8 7
|
co |
|- ( n Mat r ) |
10 |
9 5
|
cfv |
|- ( Base ` ( n Mat r ) ) |
11 |
|
vk |
|- k |
12 |
|
vl |
|- l |
13 |
|
vi |
|- i |
14 |
11
|
cv |
|- k |
15 |
14
|
csn |
|- { k } |
16 |
6 15
|
cdif |
|- ( n \ { k } ) |
17 |
|
vj |
|- j |
18 |
12
|
cv |
|- l |
19 |
18
|
csn |
|- { l } |
20 |
6 19
|
cdif |
|- ( n \ { l } ) |
21 |
13
|
cv |
|- i |
22 |
4
|
cv |
|- m |
23 |
17
|
cv |
|- j |
24 |
21 23 22
|
co |
|- ( i m j ) |
25 |
13 17 16 20 24
|
cmpo |
|- ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) |
26 |
11 12 6 6 25
|
cmpo |
|- ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) |
27 |
4 10 26
|
cmpt |
|- ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) |
28 |
1 3 2 2 27
|
cmpo |
|- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) ) |
29 |
0 28
|
wceq |
|- subMat = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) ) |