| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csubma |  |-  subMat | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | vm |  |-  m | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 1 | cv |  |-  n | 
						
							| 7 |  | cmat |  |-  Mat | 
						
							| 8 | 3 | cv |  |-  r | 
						
							| 9 | 6 8 7 | co |  |-  ( n Mat r ) | 
						
							| 10 | 9 5 | cfv |  |-  ( Base ` ( n Mat r ) ) | 
						
							| 11 |  | vk |  |-  k | 
						
							| 12 |  | vl |  |-  l | 
						
							| 13 |  | vi |  |-  i | 
						
							| 14 | 11 | cv |  |-  k | 
						
							| 15 | 14 | csn |  |-  { k } | 
						
							| 16 | 6 15 | cdif |  |-  ( n \ { k } ) | 
						
							| 17 |  | vj |  |-  j | 
						
							| 18 | 12 | cv |  |-  l | 
						
							| 19 | 18 | csn |  |-  { l } | 
						
							| 20 | 6 19 | cdif |  |-  ( n \ { l } ) | 
						
							| 21 | 13 | cv |  |-  i | 
						
							| 22 | 4 | cv |  |-  m | 
						
							| 23 | 17 | cv |  |-  j | 
						
							| 24 | 21 23 22 | co |  |-  ( i m j ) | 
						
							| 25 | 13 17 16 20 24 | cmpo |  |-  ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) | 
						
							| 26 | 11 12 6 6 25 | cmpo |  |-  ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) | 
						
							| 27 | 4 10 26 | cmpt |  |-  ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) | 
						
							| 28 | 1 3 2 2 27 | cmpo |  |-  ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) ) | 
						
							| 29 | 0 28 | wceq |  |-  subMat = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) |-> ( k e. n , l e. n |-> ( i e. ( n \ { k } ) , j e. ( n \ { l } ) |-> ( i m j ) ) ) ) ) |