| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csubmnd |
|- SubMnd |
| 1 |
|
vs |
|- s |
| 2 |
|
cmnd |
|- Mnd |
| 3 |
|
vt |
|- t |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- s |
| 6 |
5 4
|
cfv |
|- ( Base ` s ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` s ) |
| 8 |
|
c0g |
|- 0g |
| 9 |
5 8
|
cfv |
|- ( 0g ` s ) |
| 10 |
3
|
cv |
|- t |
| 11 |
9 10
|
wcel |
|- ( 0g ` s ) e. t |
| 12 |
|
vx |
|- x |
| 13 |
|
vy |
|- y |
| 14 |
12
|
cv |
|- x |
| 15 |
|
cplusg |
|- +g |
| 16 |
5 15
|
cfv |
|- ( +g ` s ) |
| 17 |
13
|
cv |
|- y |
| 18 |
14 17 16
|
co |
|- ( x ( +g ` s ) y ) |
| 19 |
18 10
|
wcel |
|- ( x ( +g ` s ) y ) e. t |
| 20 |
19 13 10
|
wral |
|- A. y e. t ( x ( +g ` s ) y ) e. t |
| 21 |
20 12 10
|
wral |
|- A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t |
| 22 |
11 21
|
wa |
|- ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) |
| 23 |
22 3 7
|
crab |
|- { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } |
| 24 |
1 2 23
|
cmpt |
|- ( s e. Mnd |-> { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } ) |
| 25 |
0 24
|
wceq |
|- SubMnd = ( s e. Mnd |-> { t e. ~P ( Base ` s ) | ( ( 0g ` s ) e. t /\ A. x e. t A. y e. t ( x ( +g ` s ) y ) e. t ) } ) |