Description: Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-subs | |- -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubs | |- -s |
|
| 1 | vx | |- x |
|
| 2 | csur | |- No |
|
| 3 | vy | |- y |
|
| 4 | 1 | cv | |- x |
| 5 | cadds | |- +s |
|
| 6 | cnegs | |- -us |
|
| 7 | 3 | cv | |- y |
| 8 | 7 6 | cfv | |- ( -us ` y ) |
| 9 | 4 8 5 | co | |- ( x +s ( -us ` y ) ) |
| 10 | 1 3 2 2 9 | cmpo | |- ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) ) |
| 11 | 0 10 | wceq | |- -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) ) |