Step |
Hyp |
Ref |
Expression |
0 |
|
vk |
|- k |
1 |
|
cA |
|- A |
2 |
|
cB |
|- B |
3 |
1 2 0
|
csu |
|- sum_ k e. A B |
4 |
|
vx |
|- x |
5 |
|
vm |
|- m |
6 |
|
cz |
|- ZZ |
7 |
|
cuz |
|- ZZ>= |
8 |
5
|
cv |
|- m |
9 |
8 7
|
cfv |
|- ( ZZ>= ` m ) |
10 |
1 9
|
wss |
|- A C_ ( ZZ>= ` m ) |
11 |
|
caddc |
|- + |
12 |
|
vn |
|- n |
13 |
12
|
cv |
|- n |
14 |
13 1
|
wcel |
|- n e. A |
15 |
0 13 2
|
csb |
|- [_ n / k ]_ B |
16 |
|
cc0 |
|- 0 |
17 |
14 15 16
|
cif |
|- if ( n e. A , [_ n / k ]_ B , 0 ) |
18 |
12 6 17
|
cmpt |
|- ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
19 |
11 18 8
|
cseq |
|- seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
20 |
|
cli |
|- ~~> |
21 |
4
|
cv |
|- x |
22 |
19 21 20
|
wbr |
|- seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x |
23 |
10 22
|
wa |
|- ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
24 |
23 5 6
|
wrex |
|- E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
25 |
|
cn |
|- NN |
26 |
|
vf |
|- f |
27 |
26
|
cv |
|- f |
28 |
|
c1 |
|- 1 |
29 |
|
cfz |
|- ... |
30 |
28 8 29
|
co |
|- ( 1 ... m ) |
31 |
30 1 27
|
wf1o |
|- f : ( 1 ... m ) -1-1-onto-> A |
32 |
13 27
|
cfv |
|- ( f ` n ) |
33 |
0 32 2
|
csb |
|- [_ ( f ` n ) / k ]_ B |
34 |
12 25 33
|
cmpt |
|- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
35 |
11 34 28
|
cseq |
|- seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
36 |
8 35
|
cfv |
|- ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
37 |
21 36
|
wceq |
|- x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
38 |
31 37
|
wa |
|- ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
39 |
38 26
|
wex |
|- E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
40 |
39 5 25
|
wrex |
|- E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
41 |
24 40
|
wo |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
42 |
41 4
|
cio |
|- ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
43 |
3 42
|
wceq |
|- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |