Metamath Proof Explorer
Definition df-t1
Description: The class of all T_1 spaces, also called Fréchet spaces. Morris,
Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007)
|
|
Ref |
Expression |
|
Assertion |
df-t1 |
|- Fre = { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
ct1 |
|- Fre |
1 |
|
vx |
|- x |
2 |
|
ctop |
|- Top |
3 |
|
va |
|- a |
4 |
1
|
cv |
|- x |
5 |
4
|
cuni |
|- U. x |
6 |
3
|
cv |
|- a |
7 |
6
|
csn |
|- { a } |
8 |
|
ccld |
|- Clsd |
9 |
4 8
|
cfv |
|- ( Clsd ` x ) |
10 |
7 9
|
wcel |
|- { a } e. ( Clsd ` x ) |
11 |
10 3 5
|
wral |
|- A. a e. U. x { a } e. ( Clsd ` x ) |
12 |
11 1 2
|
crab |
|- { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |
13 |
0 12
|
wceq |
|- Fre = { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |