Metamath Proof Explorer
Definition df-t1
Description: The class of all T_1 spaces, also called Fréchet spaces. Morris,
Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007)
|
|
Ref |
Expression |
|
Assertion |
df-t1 |
|- Fre = { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ct1 |
|- Fre |
| 1 |
|
vx |
|- x |
| 2 |
|
ctop |
|- Top |
| 3 |
|
va |
|- a |
| 4 |
1
|
cv |
|- x |
| 5 |
4
|
cuni |
|- U. x |
| 6 |
3
|
cv |
|- a |
| 7 |
6
|
csn |
|- { a } |
| 8 |
|
ccld |
|- Clsd |
| 9 |
4 8
|
cfv |
|- ( Clsd ` x ) |
| 10 |
7 9
|
wcel |
|- { a } e. ( Clsd ` x ) |
| 11 |
10 3 5
|
wral |
|- A. a e. U. x { a } e. ( Clsd ` x ) |
| 12 |
11 1 2
|
crab |
|- { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |
| 13 |
0 12
|
wceq |
|- Fre = { x e. Top | A. a e. U. x { a } e. ( Clsd ` x ) } |