Metamath Proof Explorer


Definition df-tan

Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion df-tan
|- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctan
 |-  tan
1 vx
 |-  x
2 ccos
 |-  cos
3 2 ccnv
 |-  `' cos
4 cc
 |-  CC
5 cc0
 |-  0
6 5 csn
 |-  { 0 }
7 4 6 cdif
 |-  ( CC \ { 0 } )
8 3 7 cima
 |-  ( `' cos " ( CC \ { 0 } ) )
9 csin
 |-  sin
10 1 cv
 |-  x
11 10 9 cfv
 |-  ( sin ` x )
12 cdiv
 |-  /
13 10 2 cfv
 |-  ( cos ` x )
14 11 13 12 co
 |-  ( ( sin ` x ) / ( cos ` x ) )
15 1 8 14 cmpt
 |-  ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) )
16 0 15 wceq
 |-  tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) )