Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tan | |- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctan | |- tan |
|
1 | vx | |- x |
|
2 | ccos | |- cos |
|
3 | 2 | ccnv | |- `' cos |
4 | cc | |- CC |
|
5 | cc0 | |- 0 |
|
6 | 5 | csn | |- { 0 } |
7 | 4 6 | cdif | |- ( CC \ { 0 } ) |
8 | 3 7 | cima | |- ( `' cos " ( CC \ { 0 } ) ) |
9 | csin | |- sin |
|
10 | 1 | cv | |- x |
11 | 10 9 | cfv | |- ( sin ` x ) |
12 | cdiv | |- / |
|
13 | 10 2 | cfv | |- ( cos ` x ) |
14 | 11 13 12 | co | |- ( ( sin ` x ) / ( cos ` x ) ) |
15 | 1 8 14 | cmpt | |- ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |
16 | 0 15 | wceq | |- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |