Metamath Proof Explorer


Definition df-tcph

Description: Define a function to augment a pre-Hilbert space with a norm. No extra parameters are needed, but some conditions must be satisfied to ensure that this in fact creates a normed subcomplex pre-Hilbert space (see tcphcph ). (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion df-tcph
|- toCPreHil = ( w e. _V |-> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctcph
 |-  toCPreHil
1 vw
 |-  w
2 cvv
 |-  _V
3 1 cv
 |-  w
4 ctng
 |-  toNrmGrp
5 vx
 |-  x
6 cbs
 |-  Base
7 3 6 cfv
 |-  ( Base ` w )
8 csqrt
 |-  sqrt
9 5 cv
 |-  x
10 cip
 |-  .i
11 3 10 cfv
 |-  ( .i ` w )
12 9 9 11 co
 |-  ( x ( .i ` w ) x )
13 12 8 cfv
 |-  ( sqrt ` ( x ( .i ` w ) x ) )
14 5 7 13 cmpt
 |-  ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) )
15 3 14 4 co
 |-  ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) )
16 1 2 15 cmpt
 |-  ( w e. _V |-> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) )
17 0 16 wceq
 |-  toCPreHil = ( w e. _V |-> ( w toNrmGrp ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) )