Metamath Proof Explorer


Definition df-tgp

Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)

Ref Expression
Assertion df-tgp
|- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgp
 |-  TopGrp
1 vf
 |-  f
2 cgrp
 |-  Grp
3 ctmd
 |-  TopMnd
4 2 3 cin
 |-  ( Grp i^i TopMnd )
5 ctopn
 |-  TopOpen
6 1 cv
 |-  f
7 6 5 cfv
 |-  ( TopOpen ` f )
8 vj
 |-  j
9 cminusg
 |-  invg
10 6 9 cfv
 |-  ( invg ` f )
11 8 cv
 |-  j
12 ccn
 |-  Cn
13 11 11 12 co
 |-  ( j Cn j )
14 10 13 wcel
 |-  ( invg ` f ) e. ( j Cn j )
15 14 8 7 wsbc
 |-  [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j )
16 15 1 4 crab
 |-  { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) }
17 0 16 wceq
 |-  TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) }