Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tgp | |- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctgp | |- TopGrp |
|
1 | vf | |- f |
|
2 | cgrp | |- Grp |
|
3 | ctmd | |- TopMnd |
|
4 | 2 3 | cin | |- ( Grp i^i TopMnd ) |
5 | ctopn | |- TopOpen |
|
6 | 1 | cv | |- f |
7 | 6 5 | cfv | |- ( TopOpen ` f ) |
8 | vj | |- j |
|
9 | cminusg | |- invg |
|
10 | 6 9 | cfv | |- ( invg ` f ) |
11 | 8 | cv | |- j |
12 | ccn | |- Cn |
|
13 | 11 11 12 | co | |- ( j Cn j ) |
14 | 10 13 | wcel | |- ( invg ` f ) e. ( j Cn j ) |
15 | 14 8 7 | wsbc | |- [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) |
16 | 15 1 4 | crab | |- { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
17 | 0 16 | wceq | |- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |