Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tgp | |- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctgp | |- TopGrp |
|
| 1 | vf | |- f |
|
| 2 | cgrp | |- Grp |
|
| 3 | ctmd | |- TopMnd |
|
| 4 | 2 3 | cin | |- ( Grp i^i TopMnd ) |
| 5 | ctopn | |- TopOpen |
|
| 6 | 1 | cv | |- f |
| 7 | 6 5 | cfv | |- ( TopOpen ` f ) |
| 8 | vj | |- j |
|
| 9 | cminusg | |- invg |
|
| 10 | 6 9 | cfv | |- ( invg ` f ) |
| 11 | 8 | cv | |- j |
| 12 | ccn | |- Cn |
|
| 13 | 11 11 12 | co | |- ( j Cn j ) |
| 14 | 10 13 | wcel | |- ( invg ` f ) e. ( j Cn j ) |
| 15 | 14 8 7 | wsbc | |- [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) |
| 16 | 15 1 4 | crab | |- { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
| 17 | 0 16 | wceq | |- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |