| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cthinc |  |-  ThinCat | 
						
							| 1 |  | vc |  |-  c | 
						
							| 2 |  | ccat |  |-  Cat | 
						
							| 3 |  | cbs |  |-  Base | 
						
							| 4 | 1 | cv |  |-  c | 
						
							| 5 | 4 3 | cfv |  |-  ( Base ` c ) | 
						
							| 6 |  | vb |  |-  b | 
						
							| 7 |  | chom |  |-  Hom | 
						
							| 8 | 4 7 | cfv |  |-  ( Hom ` c ) | 
						
							| 9 |  | vh |  |-  h | 
						
							| 10 |  | vx |  |-  x | 
						
							| 11 | 6 | cv |  |-  b | 
						
							| 12 |  | vy |  |-  y | 
						
							| 13 |  | vf |  |-  f | 
						
							| 14 | 13 | cv |  |-  f | 
						
							| 15 | 10 | cv |  |-  x | 
						
							| 16 | 9 | cv |  |-  h | 
						
							| 17 | 12 | cv |  |-  y | 
						
							| 18 | 15 17 16 | co |  |-  ( x h y ) | 
						
							| 19 | 14 18 | wcel |  |-  f e. ( x h y ) | 
						
							| 20 | 19 13 | wmo |  |-  E* f f e. ( x h y ) | 
						
							| 21 | 20 12 11 | wral |  |-  A. y e. b E* f f e. ( x h y ) | 
						
							| 22 | 21 10 11 | wral |  |-  A. x e. b A. y e. b E* f f e. ( x h y ) | 
						
							| 23 | 22 9 8 | wsbc |  |-  [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) | 
						
							| 24 | 23 6 5 | wsbc |  |-  [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) | 
						
							| 25 | 24 1 2 | crab |  |-  { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } | 
						
							| 26 | 0 25 | wceq |  |-  ThinCat = { c e. Cat | [. ( Base ` c ) / b ]. [. ( Hom ` c ) / h ]. A. x e. b A. y e. b E* f f e. ( x h y ) } |