| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cthl |
|- toHL |
| 1 |
|
vh |
|- h |
| 2 |
|
cvv |
|- _V |
| 3 |
|
cipo |
|- toInc |
| 4 |
|
ccss |
|- ClSubSp |
| 5 |
1
|
cv |
|- h |
| 6 |
5 4
|
cfv |
|- ( ClSubSp ` h ) |
| 7 |
6 3
|
cfv |
|- ( toInc ` ( ClSubSp ` h ) ) |
| 8 |
|
csts |
|- sSet |
| 9 |
|
coc |
|- oc |
| 10 |
|
cnx |
|- ndx |
| 11 |
10 9
|
cfv |
|- ( oc ` ndx ) |
| 12 |
|
cocv |
|- ocv |
| 13 |
5 12
|
cfv |
|- ( ocv ` h ) |
| 14 |
11 13
|
cop |
|- <. ( oc ` ndx ) , ( ocv ` h ) >. |
| 15 |
7 14 8
|
co |
|- ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) |
| 16 |
1 2 15
|
cmpt |
|- ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |
| 17 |
0 16
|
wceq |
|- toHL = ( h e. _V |-> ( ( toInc ` ( ClSubSp ` h ) ) sSet <. ( oc ` ndx ) , ( ocv ` h ) >. ) ) |