Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tmd | |- TopMnd = { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctmd | |- TopMnd |
|
1 | vf | |- f |
|
2 | cmnd | |- Mnd |
|
3 | ctps | |- TopSp |
|
4 | 2 3 | cin | |- ( Mnd i^i TopSp ) |
5 | ctopn | |- TopOpen |
|
6 | 1 | cv | |- f |
7 | 6 5 | cfv | |- ( TopOpen ` f ) |
8 | vj | |- j |
|
9 | cplusf | |- +f |
|
10 | 6 9 | cfv | |- ( +f ` f ) |
11 | 8 | cv | |- j |
12 | ctx | |- tX |
|
13 | 11 11 12 | co | |- ( j tX j ) |
14 | ccn | |- Cn |
|
15 | 13 11 14 | co | |- ( ( j tX j ) Cn j ) |
16 | 10 15 | wcel | |- ( +f ` f ) e. ( ( j tX j ) Cn j ) |
17 | 16 8 7 | wsbc | |- [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) |
18 | 17 1 4 | crab | |- { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) } |
19 | 0 18 | wceq | |- TopMnd = { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) } |