Metamath Proof Explorer


Definition df-tmd

Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Assertion df-tmd
|- TopMnd = { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctmd
 |-  TopMnd
1 vf
 |-  f
2 cmnd
 |-  Mnd
3 ctps
 |-  TopSp
4 2 3 cin
 |-  ( Mnd i^i TopSp )
5 ctopn
 |-  TopOpen
6 1 cv
 |-  f
7 6 5 cfv
 |-  ( TopOpen ` f )
8 vj
 |-  j
9 cplusf
 |-  +f
10 6 9 cfv
 |-  ( +f ` f )
11 8 cv
 |-  j
12 ctx
 |-  tX
13 11 11 12 co
 |-  ( j tX j )
14 ccn
 |-  Cn
15 13 11 14 co
 |-  ( ( j tX j ) Cn j )
16 10 15 wcel
 |-  ( +f ` f ) e. ( ( j tX j ) Cn j )
17 16 8 7 wsbc
 |-  [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j )
18 17 1 4 crab
 |-  { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) }
19 0 18 wceq
 |-  TopMnd = { f e. ( Mnd i^i TopSp ) | [. ( TopOpen ` f ) / j ]. ( +f ` f ) e. ( ( j tX j ) Cn j ) }