Step |
Hyp |
Ref |
Expression |
0 |
|
ctms |
|- toMetSp |
1 |
|
vd |
|- d |
2 |
|
cxmet |
|- *Met |
3 |
2
|
crn |
|- ran *Met |
4 |
3
|
cuni |
|- U. ran *Met |
5 |
|
cbs |
|- Base |
6 |
|
cnx |
|- ndx |
7 |
6 5
|
cfv |
|- ( Base ` ndx ) |
8 |
1
|
cv |
|- d |
9 |
8
|
cdm |
|- dom d |
10 |
9
|
cdm |
|- dom dom d |
11 |
7 10
|
cop |
|- <. ( Base ` ndx ) , dom dom d >. |
12 |
|
cds |
|- dist |
13 |
6 12
|
cfv |
|- ( dist ` ndx ) |
14 |
13 8
|
cop |
|- <. ( dist ` ndx ) , d >. |
15 |
11 14
|
cpr |
|- { <. ( Base ` ndx ) , dom dom d >. , <. ( dist ` ndx ) , d >. } |
16 |
|
csts |
|- sSet |
17 |
|
cts |
|- TopSet |
18 |
6 17
|
cfv |
|- ( TopSet ` ndx ) |
19 |
|
cmopn |
|- MetOpen |
20 |
8 19
|
cfv |
|- ( MetOpen ` d ) |
21 |
18 20
|
cop |
|- <. ( TopSet ` ndx ) , ( MetOpen ` d ) >. |
22 |
15 21 16
|
co |
|- ( { <. ( Base ` ndx ) , dom dom d >. , <. ( dist ` ndx ) , d >. } sSet <. ( TopSet ` ndx ) , ( MetOpen ` d ) >. ) |
23 |
1 4 22
|
cmpt |
|- ( d e. U. ran *Met |-> ( { <. ( Base ` ndx ) , dom dom d >. , <. ( dist ` ndx ) , d >. } sSet <. ( TopSet ` ndx ) , ( MetOpen ` d ) >. ) ) |
24 |
0 23
|
wceq |
|- toMetSp = ( d e. U. ran *Met |-> ( { <. ( Base ` ndx ) , dom dom d >. , <. ( dist ` ndx ) , d >. } sSet <. ( TopSet ` ndx ) , ( MetOpen ` d ) >. ) ) |