Metamath Proof Explorer


Definition df-toply1

Description: Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion df-toply1
|- toPoly1 = ( f e. _V |-> ( n e. ( NN0 ^m 1o ) |-> ( f ` ( n ` (/) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctp1
 |-  toPoly1
1 vf
 |-  f
2 cvv
 |-  _V
3 vn
 |-  n
4 cn0
 |-  NN0
5 cmap
 |-  ^m
6 c1o
 |-  1o
7 4 6 5 co
 |-  ( NN0 ^m 1o )
8 1 cv
 |-  f
9 3 cv
 |-  n
10 c0
 |-  (/)
11 10 9 cfv
 |-  ( n ` (/) )
12 11 8 cfv
 |-  ( f ` ( n ` (/) ) )
13 3 7 12 cmpt
 |-  ( n e. ( NN0 ^m 1o ) |-> ( f ` ( n ` (/) ) ) )
14 1 2 13 cmpt
 |-  ( f e. _V |-> ( n e. ( NN0 ^m 1o ) |-> ( f ` ( n ` (/) ) ) ) )
15 0 14 wceq
 |-  toPoly1 = ( f e. _V |-> ( n e. ( NN0 ^m 1o ) |-> ( f ` ( n ` (/) ) ) ) )