Description: Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-topon | |- TopOn = ( b e. _V |-> { j e. Top | b = U. j } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctopon | |- TopOn |
|
1 | vb | |- b |
|
2 | cvv | |- _V |
|
3 | vj | |- j |
|
4 | ctop | |- Top |
|
5 | 1 | cv | |- b |
6 | 3 | cv | |- j |
7 | 6 | cuni | |- U. j |
8 | 5 7 | wceq | |- b = U. j |
9 | 8 3 4 | crab | |- { j e. Top | b = U. j } |
10 | 1 2 9 | cmpt | |- ( b e. _V |-> { j e. Top | b = U. j } ) |
11 | 0 10 | wceq | |- TopOn = ( b e. _V |-> { j e. Top | b = U. j } ) |