Metamath Proof Explorer


Definition df-topon

Description: Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion df-topon
|- TopOn = ( b e. _V |-> { j e. Top | b = U. j } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctopon
 |-  TopOn
1 vb
 |-  b
2 cvv
 |-  _V
3 vj
 |-  j
4 ctop
 |-  Top
5 1 cv
 |-  b
6 3 cv
 |-  j
7 6 cuni
 |-  U. j
8 5 7 wceq
 |-  b = U. j
9 8 3 4 crab
 |-  { j e. Top | b = U. j }
10 1 2 9 cmpt
 |-  ( b e. _V |-> { j e. Top | b = U. j } )
11 0 10 wceq
 |-  TopOn = ( b e. _V |-> { j e. Top | b = U. j } )