Description: Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-topsp | |- TopSp = { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctps | |- TopSp |
|
| 1 | vf | |- f |
|
| 2 | ctopn | |- TopOpen |
|
| 3 | 1 | cv | |- f |
| 4 | 3 2 | cfv | |- ( TopOpen ` f ) |
| 5 | ctopon | |- TopOn |
|
| 6 | cbs | |- Base |
|
| 7 | 3 6 | cfv | |- ( Base ` f ) |
| 8 | 7 5 | cfv | |- ( TopOn ` ( Base ` f ) ) |
| 9 | 4 8 | wcel | |- ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) |
| 10 | 9 1 | cab | |- { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } |
| 11 | 0 10 | wceq | |- TopSp = { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } |