| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctos |
|- Toset |
| 1 |
|
vf |
|- f |
| 2 |
|
cpo |
|- Poset |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- f |
| 5 |
4 3
|
cfv |
|- ( Base ` f ) |
| 6 |
|
vb |
|- b |
| 7 |
|
cple |
|- le |
| 8 |
4 7
|
cfv |
|- ( le ` f ) |
| 9 |
|
vr |
|- r |
| 10 |
|
vx |
|- x |
| 11 |
6
|
cv |
|- b |
| 12 |
|
vy |
|- y |
| 13 |
10
|
cv |
|- x |
| 14 |
9
|
cv |
|- r |
| 15 |
12
|
cv |
|- y |
| 16 |
13 15 14
|
wbr |
|- x r y |
| 17 |
15 13 14
|
wbr |
|- y r x |
| 18 |
16 17
|
wo |
|- ( x r y \/ y r x ) |
| 19 |
18 12 11
|
wral |
|- A. y e. b ( x r y \/ y r x ) |
| 20 |
19 10 11
|
wral |
|- A. x e. b A. y e. b ( x r y \/ y r x ) |
| 21 |
20 9 8
|
wsbc |
|- [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) |
| 22 |
21 6 5
|
wsbc |
|- [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) |
| 23 |
22 1 2
|
crab |
|- { f e. Poset | [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) } |
| 24 |
0 23
|
wceq |
|- Toset = { f e. Poset | [. ( Base ` f ) / b ]. [. ( le ` f ) / r ]. A. x e. b A. y e. b ( x r y \/ y r x ) } |