Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-trans | |- Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctrans | |- Trans |
|
| 1 | cvv | |- _V |
|
| 2 | cep | |- _E |
|
| 3 | 2 2 | ccom | |- ( _E o. _E ) |
| 4 | 3 2 | cdif | |- ( ( _E o. _E ) \ _E ) |
| 5 | 4 | crn | |- ran ( ( _E o. _E ) \ _E ) |
| 6 | 1 5 | cdif | |- ( _V \ ran ( ( _E o. _E ) \ _E ) ) |
| 7 | 0 6 | wceq | |- Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) ) |