Description: Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-trg | |- TopRing = { r e. ( TopGrp i^i Ring ) | ( mulGrp ` r ) e. TopMnd } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctrg | |- TopRing |
|
| 1 | vr | |- r |
|
| 2 | ctgp | |- TopGrp |
|
| 3 | crg | |- Ring |
|
| 4 | 2 3 | cin | |- ( TopGrp i^i Ring ) |
| 5 | cmgp | |- mulGrp |
|
| 6 | 1 | cv | |- r |
| 7 | 6 5 | cfv | |- ( mulGrp ` r ) |
| 8 | ctmd | |- TopMnd |
|
| 9 | 7 8 | wcel | |- ( mulGrp ` r ) e. TopMnd |
| 10 | 9 1 4 | crab | |- { r e. ( TopGrp i^i Ring ) | ( mulGrp ` r ) e. TopMnd } |
| 11 | 0 10 | wceq | |- TopRing = { r e. ( TopGrp i^i Ring ) | ( mulGrp ` r ) e. TopMnd } |