Metamath Proof Explorer


Definition df-tsr

Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009)

Ref Expression
Assertion df-tsr
|- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctsr
 |-  TosetRel
1 vr
 |-  r
2 cps
 |-  PosetRel
3 1 cv
 |-  r
4 3 cdm
 |-  dom r
5 4 4 cxp
 |-  ( dom r X. dom r )
6 3 ccnv
 |-  `' r
7 3 6 cun
 |-  ( r u. `' r )
8 5 7 wss
 |-  ( dom r X. dom r ) C_ ( r u. `' r )
9 8 1 2 crab
 |-  { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) }
10 0 9 wceq
 |-  TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) }