Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tsr | |- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctsr | |- TosetRel |
|
| 1 | vr | |- r |
|
| 2 | cps | |- PosetRel |
|
| 3 | 1 | cv | |- r |
| 4 | 3 | cdm | |- dom r |
| 5 | 4 4 | cxp | |- ( dom r X. dom r ) |
| 6 | 3 | ccnv | |- `' r |
| 7 | 3 6 | cun | |- ( r u. `' r ) |
| 8 | 5 7 | wss | |- ( dom r X. dom r ) C_ ( r u. `' r ) |
| 9 | 8 1 2 | crab | |- { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |
| 10 | 0 9 | wceq | |- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |