Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tsr | |- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctsr | |- TosetRel |
|
1 | vr | |- r |
|
2 | cps | |- PosetRel |
|
3 | 1 | cv | |- r |
4 | 3 | cdm | |- dom r |
5 | 4 4 | cxp | |- ( dom r X. dom r ) |
6 | 3 | ccnv | |- `' r |
7 | 3 6 | cun | |- ( r u. `' r ) |
8 | 5 7 | wss | |- ( dom r X. dom r ) C_ ( r u. `' r ) |
9 | 8 1 2 | crab | |- { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |
10 | 0 9 | wceq | |- TosetRel = { r e. PosetRel | ( dom r X. dom r ) C_ ( r u. `' r ) } |