| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cttg | 
							 |-  toTG  | 
						
						
							| 1 | 
							
								
							 | 
							vw | 
							 |-  w  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 4 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							 |-  w  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							 |-  ( Base ` w )  | 
						
						
							| 7 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 8 | 
							
								
							 | 
							vz | 
							 |-  z  | 
						
						
							| 9 | 
							
								
							 | 
							vk | 
							 |-  k  | 
						
						
							| 10 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 11 | 
							
								
							 | 
							cicc | 
							 |-  [,]  | 
						
						
							| 12 | 
							
								
							 | 
							c1 | 
							 |-  1  | 
						
						
							| 13 | 
							
								10 12 11
							 | 
							co | 
							 |-  ( 0 [,] 1 )  | 
						
						
							| 14 | 
							
								8
							 | 
							cv | 
							 |-  z  | 
						
						
							| 15 | 
							
								
							 | 
							csg | 
							 |-  -g  | 
						
						
							| 16 | 
							
								5 15
							 | 
							cfv | 
							 |-  ( -g ` w )  | 
						
						
							| 17 | 
							
								3
							 | 
							cv | 
							 |-  x  | 
						
						
							| 18 | 
							
								14 17 16
							 | 
							co | 
							 |-  ( z ( -g ` w ) x )  | 
						
						
							| 19 | 
							
								9
							 | 
							cv | 
							 |-  k  | 
						
						
							| 20 | 
							
								
							 | 
							cvsca | 
							 |-  .s  | 
						
						
							| 21 | 
							
								5 20
							 | 
							cfv | 
							 |-  ( .s ` w )  | 
						
						
							| 22 | 
							
								7
							 | 
							cv | 
							 |-  y  | 
						
						
							| 23 | 
							
								22 17 16
							 | 
							co | 
							 |-  ( y ( -g ` w ) x )  | 
						
						
							| 24 | 
							
								19 23 21
							 | 
							co | 
							 |-  ( k ( .s ` w ) ( y ( -g ` w ) x ) )  | 
						
						
							| 25 | 
							
								18 24
							 | 
							wceq | 
							 |-  ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) )  | 
						
						
							| 26 | 
							
								25 9 13
							 | 
							wrex | 
							 |-  E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) )  | 
						
						
							| 27 | 
							
								26 8 6
							 | 
							crab | 
							 |-  { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } | 
						
						
							| 28 | 
							
								3 7 6 6 27
							 | 
							cmpo | 
							 |-  ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) | 
						
						
							| 29 | 
							
								
							 | 
							vi | 
							 |-  i  | 
						
						
							| 30 | 
							
								
							 | 
							csts | 
							 |-  sSet  | 
						
						
							| 31 | 
							
								
							 | 
							citv | 
							 |-  Itv  | 
						
						
							| 32 | 
							
								
							 | 
							cnx | 
							 |-  ndx  | 
						
						
							| 33 | 
							
								32 31
							 | 
							cfv | 
							 |-  ( Itv ` ndx )  | 
						
						
							| 34 | 
							
								29
							 | 
							cv | 
							 |-  i  | 
						
						
							| 35 | 
							
								33 34
							 | 
							cop | 
							 |-  <. ( Itv ` ndx ) , i >.  | 
						
						
							| 36 | 
							
								5 35 30
							 | 
							co | 
							 |-  ( w sSet <. ( Itv ` ndx ) , i >. )  | 
						
						
							| 37 | 
							
								
							 | 
							clng | 
							 |-  LineG  | 
						
						
							| 38 | 
							
								32 37
							 | 
							cfv | 
							 |-  ( LineG ` ndx )  | 
						
						
							| 39 | 
							
								17 22 34
							 | 
							co | 
							 |-  ( x i y )  | 
						
						
							| 40 | 
							
								14 39
							 | 
							wcel | 
							 |-  z e. ( x i y )  | 
						
						
							| 41 | 
							
								14 22 34
							 | 
							co | 
							 |-  ( z i y )  | 
						
						
							| 42 | 
							
								17 41
							 | 
							wcel | 
							 |-  x e. ( z i y )  | 
						
						
							| 43 | 
							
								17 14 34
							 | 
							co | 
							 |-  ( x i z )  | 
						
						
							| 44 | 
							
								22 43
							 | 
							wcel | 
							 |-  y e. ( x i z )  | 
						
						
							| 45 | 
							
								40 42 44
							 | 
							w3o | 
							 |-  ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) )  | 
						
						
							| 46 | 
							
								45 8 6
							 | 
							crab | 
							 |-  { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } | 
						
						
							| 47 | 
							
								3 7 6 6 46
							 | 
							cmpo | 
							 |-  ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) | 
						
						
							| 48 | 
							
								38 47
							 | 
							cop | 
							 |-  <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. | 
						
						
							| 49 | 
							
								36 48 30
							 | 
							co | 
							 |-  ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) | 
						
						
							| 50 | 
							
								29 28 49
							 | 
							csb | 
							 |-  [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) | 
						
						
							| 51 | 
							
								1 2 50
							 | 
							cmpt | 
							 |-  ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) | 
						
						
							| 52 | 
							
								0 51
							 | 
							wceq | 
							 |-  toTG = ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) |