| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR |  |-  R | 
						
							| 1 | 0 | cttrcl |  |-  t++ R | 
						
							| 2 |  | vx |  |-  x | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 |  | vn |  |-  n | 
						
							| 5 |  | com |  |-  _om | 
						
							| 6 |  | c1o |  |-  1o | 
						
							| 7 | 5 6 | cdif |  |-  ( _om \ 1o ) | 
						
							| 8 |  | vf |  |-  f | 
						
							| 9 | 8 | cv |  |-  f | 
						
							| 10 | 4 | cv |  |-  n | 
						
							| 11 | 10 | csuc |  |-  suc n | 
						
							| 12 | 9 11 | wfn |  |-  f Fn suc n | 
						
							| 13 |  | c0 |  |-  (/) | 
						
							| 14 | 13 9 | cfv |  |-  ( f ` (/) ) | 
						
							| 15 | 2 | cv |  |-  x | 
						
							| 16 | 14 15 | wceq |  |-  ( f ` (/) ) = x | 
						
							| 17 | 10 9 | cfv |  |-  ( f ` n ) | 
						
							| 18 | 3 | cv |  |-  y | 
						
							| 19 | 17 18 | wceq |  |-  ( f ` n ) = y | 
						
							| 20 | 16 19 | wa |  |-  ( ( f ` (/) ) = x /\ ( f ` n ) = y ) | 
						
							| 21 |  | vm |  |-  m | 
						
							| 22 | 21 | cv |  |-  m | 
						
							| 23 | 22 9 | cfv |  |-  ( f ` m ) | 
						
							| 24 | 22 | csuc |  |-  suc m | 
						
							| 25 | 24 9 | cfv |  |-  ( f ` suc m ) | 
						
							| 26 | 23 25 0 | wbr |  |-  ( f ` m ) R ( f ` suc m ) | 
						
							| 27 | 26 21 10 | wral |  |-  A. m e. n ( f ` m ) R ( f ` suc m ) | 
						
							| 28 | 12 20 27 | w3a |  |-  ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) | 
						
							| 29 | 28 8 | wex |  |-  E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) | 
						
							| 30 | 29 4 7 | wrex |  |-  E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) | 
						
							| 31 | 30 2 3 | copab |  |-  { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } | 
						
							| 32 | 1 31 | wceq |  |-  t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |