Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv this is equivalent to being a domain) such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015) (Revised by Thierry Arnoux, 9-May-2025)

Ref Expression
Assertion df-ufd
|- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd
 |-  UFD
1 vr
 |-  r
2 ccrg
 |-  CRing
3 cabv
 |-  AbsVal
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( AbsVal ` r )
6 c0
 |-  (/)
7 5 6 wne
 |-  ( AbsVal ` r ) =/= (/)
8 vi
 |-  i
9 cprmidl
 |-  PrmIdeal
10 4 9 cfv
 |-  ( PrmIdeal ` r )
11 c0g
 |-  0g
12 4 11 cfv
 |-  ( 0g ` r )
13 12 csn
 |-  { ( 0g ` r ) }
14 13 csn
 |-  { { ( 0g ` r ) } }
15 10 14 cdif
 |-  ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } )
16 8 cv
 |-  i
17 crpm
 |-  RPrime
18 4 17 cfv
 |-  ( RPrime ` r )
19 16 18 cin
 |-  ( i i^i ( RPrime ` r ) )
20 19 6 wne
 |-  ( i i^i ( RPrime ` r ) ) =/= (/)
21 20 8 15 wral
 |-  A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/)
22 7 21 wa
 |-  ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) )
23 22 1 2 crab
 |-  { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }
24 0 23 wceq
 |-  UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }