Step |
Hyp |
Ref |
Expression |
0 |
|
cufd |
|- UFD |
1 |
|
vr |
|- r |
2 |
|
ccrg |
|- CRing |
3 |
|
cabv |
|- AbsVal |
4 |
1
|
cv |
|- r |
5 |
4 3
|
cfv |
|- ( AbsVal ` r ) |
6 |
|
c0 |
|- (/) |
7 |
5 6
|
wne |
|- ( AbsVal ` r ) =/= (/) |
8 |
|
vi |
|- i |
9 |
|
cprmidl |
|- PrmIdeal |
10 |
4 9
|
cfv |
|- ( PrmIdeal ` r ) |
11 |
|
c0g |
|- 0g |
12 |
4 11
|
cfv |
|- ( 0g ` r ) |
13 |
12
|
csn |
|- { ( 0g ` r ) } |
14 |
13
|
csn |
|- { { ( 0g ` r ) } } |
15 |
10 14
|
cdif |
|- ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) |
16 |
8
|
cv |
|- i |
17 |
|
crpm |
|- RPrime |
18 |
4 17
|
cfv |
|- ( RPrime ` r ) |
19 |
16 18
|
cin |
|- ( i i^i ( RPrime ` r ) ) |
20 |
19 6
|
wne |
|- ( i i^i ( RPrime ` r ) ) =/= (/) |
21 |
20 8 15
|
wral |
|- A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) |
22 |
7 21
|
wa |
|- ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) |
23 |
22 1 2
|
crab |
|- { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } |
24 |
0 23
|
wceq |
|- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } |