Metamath Proof Explorer


Definition df-uhgr

Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set v (of "vertices") and a function e (representing indexed "edges") into the power set of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 8-Oct-2020)

Ref Expression
Assertion df-uhgr
|- UHGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e --> ( ~P v \ { (/) } ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuhgr
 |-  UHGraph
1 vg
 |-  g
2 cvtx
 |-  Vtx
3 1 cv
 |-  g
4 3 2 cfv
 |-  ( Vtx ` g )
5 vv
 |-  v
6 ciedg
 |-  iEdg
7 3 6 cfv
 |-  ( iEdg ` g )
8 ve
 |-  e
9 8 cv
 |-  e
10 9 cdm
 |-  dom e
11 5 cv
 |-  v
12 11 cpw
 |-  ~P v
13 c0
 |-  (/)
14 13 csn
 |-  { (/) }
15 12 14 cdif
 |-  ( ~P v \ { (/) } )
16 10 15 9 wf
 |-  e : dom e --> ( ~P v \ { (/) } )
17 16 8 7 wsbc
 |-  [. ( iEdg ` g ) / e ]. e : dom e --> ( ~P v \ { (/) } )
18 17 5 4 wsbc
 |-  [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e --> ( ~P v \ { (/) } )
19 18 1 cab
 |-  { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e --> ( ~P v \ { (/) } ) }
20 0 19 wceq
 |-  UHGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e --> ( ~P v \ { (/) } ) }