Metamath Proof Explorer


Definition df-un

Description: Define the union of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } u. { 1 , 8 } ) = { 1 , 3 , 8 } ( ex-un ). Contrast this operation with difference ( A \ B ) ( df-dif ) and intersection ( A i^i B ) ( df-in ). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 . For union defined in terms of intersection, see dfun3 . (Contributed by NM, 23-Aug-1993)

Ref Expression
Assertion df-un
|- ( A u. B ) = { x | ( x e. A \/ x e. B ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 cun
 |-  ( A u. B )
3 vx
 |-  x
4 3 cv
 |-  x
5 4 0 wcel
 |-  x e. A
6 4 1 wcel
 |-  x e. B
7 5 6 wo
 |-  ( x e. A \/ x e. B )
8 7 3 cab
 |-  { x | ( x e. A \/ x e. B ) }
9 2 8 wceq
 |-  ( A u. B ) = { x | ( x e. A \/ x e. B ) }