Metamath Proof Explorer


Definition df-unc

Description: Define the uncurrying of F , which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-unc
|- uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 0 cunc
 |-  uncurry F
2 vx
 |-  x
3 vy
 |-  y
4 vz
 |-  z
5 3 cv
 |-  y
6 2 cv
 |-  x
7 6 0 cfv
 |-  ( F ` x )
8 4 cv
 |-  z
9 5 8 7 wbr
 |-  y ( F ` x ) z
10 9 2 3 4 coprab
 |-  { <. <. x , y >. , z >. | y ( F ` x ) z }
11 1 10 wceq
 |-  uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z }