Description: Define the uncurrying of F , which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-unc | |- uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cF | |- F |
|
1 | 0 | cunc | |- uncurry F |
2 | vx | |- x |
|
3 | vy | |- y |
|
4 | vz | |- z |
|
5 | 3 | cv | |- y |
6 | 2 | cv | |- x |
7 | 6 0 | cfv | |- ( F ` x ) |
8 | 4 | cv | |- z |
9 | 5 8 7 | wbr | |- y ( F ` x ) z |
10 | 9 2 3 4 | coprab | |- { <. <. x , y >. , z >. | y ( F ` x ) z } |
11 | 1 10 | wceq | |- uncurry F = { <. <. x , y >. , z >. | y ( F ` x ) z } |