Metamath Proof Explorer


Definition df-undef

Description: Define the undefined value function, whose value at set s is guaranteed not to be a member of s (see pwuninel ). (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion df-undef
|- Undef = ( s e. _V |-> ~P U. s )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cund
 |-  Undef
1 vs
 |-  s
2 cvv
 |-  _V
3 1 cv
 |-  s
4 3 cuni
 |-  U. s
5 4 cpw
 |-  ~P U. s
6 1 2 5 cmpt
 |-  ( s e. _V |-> ~P U. s )
7 0 6 wceq
 |-  Undef = ( s e. _V |-> ~P U. s )