Metamath Proof Explorer


Definition df-uni

Description: Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of TakeutiZaring p. 16. For example, U. { { 1 , 3 } , { 1 , 8 } } = { 1 , 3 , 8 } ( ex-uni ). This is similar to the union of two classes df-un . (Contributed by NM, 23-Aug-1993)

Ref Expression
Assertion df-uni
|- U. A = { x | E. y ( x e. y /\ y e. A ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cuni
 |-  U. A
2 vx
 |-  x
3 vy
 |-  y
4 2 cv
 |-  x
5 3 cv
 |-  y
6 4 5 wcel
 |-  x e. y
7 5 0 wcel
 |-  y e. A
8 6 7 wa
 |-  ( x e. y /\ y e. A )
9 8 3 wex
 |-  E. y ( x e. y /\ y e. A )
10 9 2 cab
 |-  { x | E. y ( x e. y /\ y e. A ) }
11 1 10 wceq
 |-  U. A = { x | E. y ( x e. y /\ y e. A ) }