Step |
Hyp |
Ref |
Expression |
0 |
|
cusp |
|- UnifSp |
1 |
|
vf |
|- f |
2 |
|
cuss |
|- UnifSt |
3 |
1
|
cv |
|- f |
4 |
3 2
|
cfv |
|- ( UnifSt ` f ) |
5 |
|
cust |
|- UnifOn |
6 |
|
cbs |
|- Base |
7 |
3 6
|
cfv |
|- ( Base ` f ) |
8 |
7 5
|
cfv |
|- ( UnifOn ` ( Base ` f ) ) |
9 |
4 8
|
wcel |
|- ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) |
10 |
|
ctopn |
|- TopOpen |
11 |
3 10
|
cfv |
|- ( TopOpen ` f ) |
12 |
|
cutop |
|- unifTop |
13 |
4 12
|
cfv |
|- ( unifTop ` ( UnifSt ` f ) ) |
14 |
11 13
|
wceq |
|- ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) |
15 |
9 14
|
wa |
|- ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) |
16 |
15 1
|
cab |
|- { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |
17 |
0 16
|
wceq |
|- UnifSp = { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |